propagateUncertainty.Rd
Explore uncertainty space on abscissa or ordinate and propagate of any of actR's change functions
propagateUncertainty(
time,
vals,
changeFun,
simulate.time.uncertainty = TRUE,
simulate.paleo.uncertainty = TRUE,
n.ens = 100,
bam.model = list(ns = n.ens, name = "bernoulli", param = 0.05),
paleo.uncertainty = sd(vals, na.rm = TRUE)/2,
paleo.ar1 = sqrt(0.5),
paleo.arima.order = c(1, 0, 0),
summarize = FALSE,
seed = round(sum(time, na.rm = TRUE)),
progress = TRUE,
...
)
a time vector, or matrix of time ensemble members (ensembles in columns)
a values vector, or matrix of values ensemble members (ensembles in columns)
the change function to across which to propagate
TRUE or FALSE. If an ensemble is not included, do you want to simulate time ensembles (default = TRUE)
TRUE or FALSE. If an ensemble is not included, do you want to simulate paleo ensembles (default = TRUE)
How many ensembles to use for error propagation? (default = 100)
BAM Model parameters to use if simulating time uncertainty (default = list(ns = n.ens, name = "bernoulli", param = 0.05), paleo.uncertainty = sd(vals,na.rm = TRUE)))
Uncertainty to use if modelling uncertainty for paleo values. (default = sd(vals,na.rm = TRUE)/2)
Autocorrelation coefficient to use for modelling uncertainty on paleoData, what fraction of the uncertainties are autocorrelated? (default = sqrt(0.5); or 50% autocorrelated uncertainty)
Order to use for ARIMA model used in modelling uncertainty on paleoDat (default = c(1,0,0))
Boolean. Summarize the output? Or return all the ensembles?
set a seed for reproducibility
show null hypothesis testing progress bar?
arguments to pass to pass to changeFun
a propagated uncertainty tibble