Gallery#
PaleoBooks is a compendium of digital resources to bridge the gap between paleoclimate observations and models, and between past, present and future. The goal is as much to encourage adoption of open-source, free languages like R and Python by the observational paleoscience community as it is to encourage the modeling community to leverage the unique information coming from paleo archives.
The scholarly objects shown below are of several types:
Tutorials on how to overcome a particular technical difficulty (“Life Hacks”)
Tutorials on how to leverage open-source code to achieve easier, more transparent, or more powerful scientific workflows (“Science Bits”)
Examples of novel paleoscience using the Python ecosystem e.g. as turn-key supplementary material from recent publications (“Papers”)
In the following, “PaleoBooks” refers to curated collections of Jupyter Notebooks organized around various themes. “Chapters” refers to the components of these PaleoBooks. A system of tags allows both PaleoBooks and individual chapters to be associated with one another based on individual themes or methodologies, in addition to their host PaleoBook. These tags enable searching along 3 directions:
“Domains” refers to scientific themes or methodologies
“Formats” refers to the type of resource (Life Hacks, Science Bits, or Papers)
“Packages” refers to the packages being used in each notebook (e.g. Xarray)
The gallery below is a work in progress, and we encourage you to contribute your own analyses if you think they might bring enlightenment to, and/or ease the life of, fellow scientists.
PaleoBooks#

coordinate systems clustering Paleoceanography tracers oceanography Deglaciation Mystery Interval machine learning data viz watermass geometry eNd C14 model output, pandas intake scikit-learn seaborn xarray matplotlib cartopy, Lifehacks Science Bits

temperature proxy composite, cfr numpy pandas seaborn pyleoclim, Science Bits

clustering watermass geometry endmember mixing tracers, basemap sqlalchemy scipy pandas scikit-learn matplotlib, Science Bits

data viz, pyleoclim matplotlib ammonyte, Extras Main Analysis

wavelet analysis model-data comparison paleoceanography insolation spectral analysis correlation cross-wavelet analysis paleoclimate age uncertainty model output, pylipd climlab xarray pyleoclim cartopy, Science Bits

Bayesian Statistics Sr/Ca Calibration paleoceanography coral Statistics Paleocenography calibration, Great Tables arviz pymc statsmodel pandas pyleoclim matplotlib, Getting Started Calibration

paleoceanography modeling PCA, eofs pandas xarray pyleoclim matplotlib cartopy, Science Bits

reconstruction PMIP PaMoDaCo data assimilation timeseries modeling paleoclimatology Common Era data viz statistics, pens statsmodels scipy pandas seaborn pyleoclim matplotlib, Plume Distance Paleoclimate Applications Motivation Temporal Interpretation

data analysis data viz data wrangling, basemap ammonyte pyLiPD pylipd pyleoclim matplotlib, Main Analysis Exploring the Data Loading Data

LiPD ensemble wavelets visualization correlation spectral analysis age modeling uncertainty quantification regression PCA mapping age uncertainty dimension reduction tidyverse calibration data wrangling, lipdR ggplot2 purrr oxcAAR readr dplyr, Data Manipulation Core Methods Extensions
Chapters#

oceanography tracers data viz, xarray matplotlib cartopy pandas seaborn, Lifehacks

model output oceanography coordinate systems, xarray matplotlib cartopy pandas intake, Lifehacks

model output eNd, xarray matplotlib cartopy pandas, Science Bits

clustering machine learning watermass geometry, xarray matplotlib cartopy scikit-learn, Science Bits

C14 Paleoceanography Deglaciation Mystery Interval, xarray matplotlib cartopy pandas, Science Bits

AWS cloud-ready data data viz CMIP6, intake AWS xarray pandas, Lifehacks

model output CMIP6 coordinate systems, xarray matplotlib cartopy pandas, Lifehacks

model output LMR CMIP6, xarray matplotlib cartopy pandas pyleoclim, Science Bits

proxy composite temperature, numpy seaborn pandas pyleoclim cfr, Science Bits

watermass geometry tracers endmember mixing, basemap scipy matplotlib pandas sqlalchemy, Science Bits

clustering watermass geometry, basemap scikit-learn matplotlib, Science Bits

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Main Analysis

data viz, matplotlib pyleoclim ammonyte, Extras

data viz, matplotlib pyleoclim ammonyte, Extras

data viz, matplotlib pyleoclim ammonyte, Extras

spectral analysis wavelet analysis cross-wavelet analysis insolation paleoceanography, xarray pyleoclim pylipd climlab, Science Bits

model output spectral analysis model-data comparison paleoclimate, xarray pyleoclim, Science Bits

paleoclimate correlation age uncertainty, xarray pyleoclim cartopy pylipd, Science Bits

paleoceanography Sr/Ca coral calibration, matplotlib pyleoclim pandas, Getting Started

Statistics Calibration Paleocenography, statsmodel Great Tables, Calibration

Bayesian Statistics Calibration Paleocenography, pymc arviz, Calibration

paleoceanography PCA modeling, xarray pyleoclim cartopy matplotlib pandas eofs, Science Bits

paleoclimatology data assimilation data viz, matplotlib pens pyleoclim, Motivation

data assimilation PaMoDaCo, matplotlib pens, Temporal Interpretation

data assimilation timeseries modeling, matplotlib pens statsmodels seaborn, Temporal Interpretation

data assimilation timeseries modeling, matplotlib pens pyleoclim, Temporal Interpretation

statistics PaMoDaCo, matplotlib pens seaborn, Plume Distance

statistics PaMoDaCo, matplotlib pens seaborn, Plume Distance

reconstruction statistics Common Era, matplotlib seaborn pens scipy, Paleoclimate Applications

reconstruction statistics Common Era, matplotlib pens, Paleoclimate Applications

data assimilation PaMoDaCo PMIP, matplotlib pens pyleoclim pandas, Paleoclimate Applications

data wrangling, pyLiPD, Loading Data

data wrangling, pylipd pyleoclim, Loading Data

data viz data analysis, pyleoclim matplotlib, Exploring the Data

data viz data analysis, pyleoclim basemap, Exploring the Data

data viz data analysis, pyleoclim matplotlib, Main Analysis

data analysis data viz, matplotlib pyleoclim, Main Analysis

data viz data analysis, pyleoclim ammonyte matplotlib, Main Analysis

data viz data analysis, pyleoclim matplotlib, Main Analysis

age modeling uncertainty quantification, geoChronR lipdR, Core Methods

correlation age uncertainty, geoChronR ggplot2, Core Methods

regression calibration, geoChronR readr ggplot2, Core Methods

spectral analysis wavelets, geoChronR, Core Methods

PCA dimension reduction, geoChronR, Core Methods

visualization, geoChronR ggplot2, Data Manipulation

data wrangling mapping, geoChronR, Data Manipulation

data wrangling tidyverse, geoChronR dplyr purrr, Data Manipulation

age modeling, geoChronR oxcAAR, Extensions

LiPD ensemble, geoChronR, Extensions