Creating Murmuration Plots for Interglacial Data#
This notebook lays out the details of how we use Pyleoclim to calculate correlation between our speleothem oxygen isotope data and insolation at various latitudes, and how we construct “murmuration” plots from this data. These are identical to those built in the Leviathan Cave and Insolation
notebook, only now the records have been subdivided into glacial/interglacial components. Structurally this notebook is also nearly identical to Glacial Correlation Analysis
, we just focus on Interglacial periods here.
The notebook is structured as follows:
Define a function that will be used to calculate correlations between records that contain large hiatuses (as has been defined elsewhere in this book)
Define insolation curves using climlab
Create versions of each of our records that are comprised only of data from interglacial periods
Calculate correlation between insolation at various latitudes and the interglacial records
Plot results
# Loading libraries
import pickle
from tqdm import tqdm
import pyleoclim as pyleo
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from climlab.solar.orbital import OrbitalTable
from climlab.solar.insolation import daily_insolation
Defining our correlation function, see Leviathan Cave and Insolation
notebook for discussion:
def correlate_hiatus_series(series1, series2, cutoff_scale1=None):
"""Function to correlate series with large gaps. This is done by segmenting the time series, smoothing (if this is desired),
and then reconnecting the time series with a dummy time axis so as not to re-introduce the hiatuses.
series1 : pyleoclim.Series
One series to correlate, presumed to have hiatuses
series2 : pyleoclim.Series
Other series to correlate, presumed to not have hiatuses
cutoff_scale : int
Cutoff scale for smoothing for series 1
"""
if cutoff_scale1:
segments = series1.segment()
if isinstance(segments, pyleo.core.multiplegeoseries.MultipleGeoSeries):
smoothed_series_value = []
smoothed_series_time = []
for segment in segments.series_list:
if max(segment.time) - min(segment.time) > 6:
segment_smooth = segment.interp().filter(cutoff_scale=cutoff_scale1)
smoothed_series_value.extend(segment_smooth.value)
smoothed_series_time.extend(segment_smooth.time)
smoothed_series = series1.copy()
smoothed_series.value = smoothed_series_value
smoothed_series.time = smoothed_series_time
else:
smoothed_series = series1.interp().filter(cutoff_scale=cutoff_scale1)
series1 = smoothed_series
smoothed_segments = series1.segment()
series1_values = []
series2_values = []
if isinstance(smoothed_segments, pyleo.core.multiplegeoseries.MultipleGeoSeries):
for segment in smoothed_segments.series_list:
ms = pyleo.MultipleSeries([segment, series2]).common_time()
s1, s2 = ms.series_list
series1_values.extend(s1.value)
series2_values.extend(s2.value)
assert len(series1_values) == len(series2_values)
time = np.arange(len(series1_values))
s1_corr = pyleo.Series(
time=np.array(time), value=np.array(series1_values), verbose=False
)
s2_corr = pyleo.Series(
time=np.array(time), value=np.array(series2_values), verbose=False
)
else:
s1_corr = series1
s2_corr = series2
# Normally this isn't necessary, just dealing with a bug in the pyleoclim library
s1_corr.time = np.array(s1_corr.time)
s1_corr.value = np.array(s1_corr.value)
s2_corr.time = np.array(s2_corr.time)
s2_corr.value = np.array(s2_corr.value)
corr = s1_corr.correlation(s2_corr, number=1, mute_pbar=True)
return corr
Creating integrated insolation curve at northern hemisphere latitudes and southern hemisphere latitudes over the respective summer months:
# Creating insolation dictionaries
lat_list = np.arange(-80, 85, 5)
jja_dict = {}
djf_dict = {}
# array with specified kyears (can be plain numpy or xarray.DataArray)
years = np.arange(-1000, 1)
# subset of orbital parameters for specified time
orb = OrbitalTable.interp(kyear=years)
# Day numbers from June 1st to August 31st
jja_days = np.arange(152, 243)
# Day numbers from December 1st to January 31st
djf_days1 = np.arange(335, 365)
djf_days2 = np.arange(0, 60)
djf_days = np.concatenate((djf_days1, djf_days2))
for lat in lat_list:
if lat > 0:
days = jja_days
inso = daily_insolation(lat=lat, day=days, orb=orb).mean(dim="day")
inso_series = pyleo.Series(
time=0 - years[::-1],
value=inso[::-1],
time_name="Age",
time_unit="Kyr BP",
value_name=f"JJA Insolation {lat} N",
value_unit="W/m^2",
verbose=False,
)
jja_dict[lat] = inso_series
elif lat < 0:
days = djf_days
inso = daily_insolation(lat=lat, day=days, orb=orb).mean(dim="day")
inso_series = pyleo.Series(
time=0 - years[::-1],
value=inso[::-1],
time_name="Age",
time_unit="Kyr BP",
value_name=f"DJF Insolation {-lat} S",
value_unit="W/m^2",
verbose=False,
)
djf_dict[lat] = inso_series
else:
continue
Defining MIS boundaries:
# MIS boundaries
MIS_df = pd.read_table(
"https://lorraine-lisiecki.com/LR04_MISboundaries.txt",
skiprows=1,
header=0,
delim_whitespace=True,
nrows=25,
index_col="Boundary",
)
interglacial_to_glacial = [
"1/2",
"5/6",
"7/8",
"9/10",
"11/12",
"13/14",
"15/16",
"17/18",
"19/20",
]
glacial_to_interglacial = [
"4/5",
"6/7",
"8/9",
"10/11",
"12/13",
"14/15",
"16/17",
"18/19",
]
glacial_timing = [
(
MIS_df.loc[interglacial_to_glacial[idx]]["Age(ka)"],
MIS_df.loc[glacial_to_interglacial[idx]]["Age(ka)"],
)
for idx in range(len(glacial_to_interglacial))
]
interglacial_timing = [
(glacial_timing[idx - 1][1], glacial_timing[idx][0])
for idx in range(1, len(glacial_to_interglacial))
]
# Loading data
with open("../../data/geo_ms_composite_dict.pkl", "rb") as handle:
geo_ms_composite_dict = pickle.load(handle)
with open("../../data/cmap_grouped.pkl", "rb") as handle:
cmap = pickle.load(handle)
Creating interglacial series using previously defined MIS boundaries:
# Creating interglacial series
interglacial_dict = {}
interglacial_lengths = {}
for label, series in geo_ms_composite_dict.items():
interglacial_lengths[label] = 0
series = series.convert_time_unit("kyrs BP")
value = []
time = []
for interval in interglacial_timing:
series_interval = series.slice(interval)
if len(series_interval.time) > 1:
value.extend(series_interval.value)
time.extend(series_interval.time)
length = max(series_interval.time) - min(series_interval.time)
interglacial_lengths[label] += length
interglacial_series = series.copy()
interglacial_series.time = time
interglacial_series.value = value
interglacial_dict[label] = interglacial_series
Calculating correlation at various latitudes and with various amounts of shift in the oxygen isotope data:
# Calculating correlations
shift_array = np.arange(
0, 6.1, 0.5
) # Define the leads/lags to be analyzed in units of your time axis (we use kyrs BP here)
# shift_array = np.arange(-8,8.1,2)
series_shift_dict_interglacial = {shift: {} for shift in shift_array}
for shift in tqdm(shift_array):
for idx, orig_series in enumerate(interglacial_dict.values()):
series = orig_series.copy()
label = series.label
series.time += shift
lat = series.lat
corr_res = {}
if lat > 0:
for corr_lat, corr_series in jja_dict.items():
corr = correlate_hiatus_series(
series1=series, series2=corr_series, cutoff_scale1=6
)
corr_res[corr_lat] = [corr.p, corr.r]
elif lat < 0:
for corr_lat, corr_series in djf_dict.items():
corr = correlate_hiatus_series(
series1=series, series2=corr_series, cutoff_scale1=6
)
corr_res[corr_lat] = [corr.p, corr.r]
correlated_inso = []
for corr_lat, res in corr_res.items():
corr_p, corr_r = res
correlated_inso.append([corr_lat, corr_p, corr_r])
series_shift_dict_interglacial[shift][label] = correlated_inso
0%| | 0/13 [00:00<?, ?it/s]
8%|█████████▍ | 1/13 [00:02<00:24, 2.08s/it]
15%|██████████████████▉ | 2/13 [00:04<00:22, 2.04s/it]
23%|████████████████████████████▍ | 3/13 [00:06<00:20, 2.02s/it]
31%|█████████████████████████████████████▊ | 4/13 [00:08<00:18, 2.02s/it]
38%|███████████████████████████████████████████████▎ | 5/13 [00:10<00:16, 2.02s/it]
46%|████████████████████████████████████████████████████████▊ | 6/13 [00:12<00:14, 2.02s/it]
54%|██████████████████████████████████████████████████████████████████▏ | 7/13 [00:14<00:12, 2.02s/it]
62%|███████████████████████████████████████████████████████████████████████████▋ | 8/13 [00:16<00:10, 2.02s/it]
69%|█████████████████████████████████████████████████████████████████████████████████████▏ | 9/13 [00:18<00:08, 2.01s/it]
77%|█████████████████████████████████████████████████████████████████████████████████████████████▊ | 10/13 [00:20<00:06, 2.01s/it]
85%|███████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 11/13 [00:22<00:04, 2.02s/it]
92%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████▌ | 12/13 [00:24<00:02, 2.03s/it]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 13/13 [00:26<00:00, 2.03s/it]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 13/13 [00:26<00:00, 2.02s/it]
Loading into DataFrame for ease of plotting:
# Creating dataframe
series_df_dict_interglacial = {}
for series in interglacial_dict.values():
columns = shift_array
df = pd.DataFrame(index=np.arange(5, 81, 5), columns=columns)
for shift in shift_array:
corr_list = series_shift_dict_interglacial[shift][series.label]
for corr in corr_list:
lat = np.abs(corr[0])
r = corr[2]
df.loc[lat, shift] = r**2
series_df_dict_interglacial[series.label] = df
Plotting:
# Plotting
title_cmap = {
"Kesang.China.2012": "Blue",
"Linzhu.China.2009": "Blue",
"Bittoo.India.2016": "Blue",
"Dongge.China.2004": "Blue",
"Sanbao.China.2016": "Blue",
"CuevadelDiamante.Peru.2013": "Green",
"Botuvera.Brazil.2005": "Green",
"Leviathan.Nevada.2017": "Purple",
"DevilsHole.Nevada.2017": "Purple",
"BuckeyeCreek.WestVirginia.2019": "Purple",
"Peqiin.Israel.2003": "Red",
"JerusalemWest.Jerusalem.1999": "Red",
"Soreq.Israel.2003": "Red",
"Clearwater.Borneo.2016": "Brown",
}
fig, ax = plt.subplots(nrows=4, ncols=4, figsize=(16, 20))
# fig.subplots_adjust(wspace=0.6, hspace=0.4)
fig.tight_layout()
axes = ax.ravel()
colors = sns.color_palette("colorblind")
plot_order = [
"Kesang.China.2012",
"Linzhu.China.2009",
"Bittoo.India.2016",
"Dongge.China.2004",
"Sanbao.China.2016",
"CuevadelDiamante.Peru.2013",
"Botuvera.Brazil.2005",
"Leviathan.Nevada.2017",
"DevilsHole.Nevada.2017",
"BuckeyeCreek.WestVirginia.2019",
"Peqiin.Israel.2003",
"JerusalemWest.Jerusalem.1999",
"Soreq.Israel.2003",
"Clearwater.Borneo.2016",
]
for idx, label in enumerate(plot_order):
df = series_df_dict_interglacial[label]
scatter_df = df.drop(labels=0, axis=1)
sns.lineplot(
x=df[0].index.to_numpy(),
y=df[0].to_numpy(),
ax=axes[idx],
linestyle="--",
color="black",
label=0,
)
sns.scatterplot(
scatter_df,
ax=axes[idx],
legend=True,
palette="viridis",
markers=["o" for _ in scatter_df.columns],
s=50,
edgecolor="black",
linewidth=0.1,
)
series = geo_ms_composite_dict[label]
lat = np.abs(series.lat)
axes[idx].axvline(x=lat, color="grey", label="Local Latitude", linestyle=":")
if idx == len(series_df_dict_interglacial.keys()) - 1:
handles, labels = axes[idx].get_legend_handles_labels()
fig.legend(
handles,
labels,
loc="center right",
bbox_to_anchor=[1.12, 0.5],
title="Offset in years",
)
if idx in [0, 4, 8, 12]:
axes[idx].set_ylabel("R$^{2}$")
if idx in [10, 11, 12, 13]:
axes[idx].set_xlabel("Absolute latitude")
axes[idx].get_legend().remove()
axes[idx].set_title(
f"{label.split('.')[0]} ", color=title_cmap[label]
) # + f"{interglacial_lengths[label]:.1f} kyr")
axes[idx].set_ylim([0, 0.9])
fig.delaxes(ax[3][2])
fig.delaxes(ax[3][3])
plt.suptitle(
"R$^{2}$ vs. Latitude (Interglacial)", y=1.05, fontsize=32, fontweight="bold"
)
Text(0.5, 1.05, 'R$^{2}$ vs. Latitude (Interglacial)')
