Basic timeseries manipulation#

by Jordan Landers, Julien Emile-Geay

Preamble#

Pyleoclim has multiple functionalities to pre-process a timeseries including standardizing, detrending, and interpolation. You can learn about the various pre-processing steps in Notebooks .ipynb and ipynb. Here, we simply standardize the data and plot it against the original data:

Goals:#

  • Learn to specify a slice of a Series

  • Learn to quickly view summary statistics of a Series

  • Learn to standardize a Series

  • Learn to gaussianize a Series

Reading Time:

5 minutes

Keywords#

Summary Statistics; Standardize; Gaussianize;

Pre-requisites#

None. This tutorial assumes basic knowledge of Python. If you are not familiar with this coding language, check out this tutorial.

Relevant Packages#

Pandas, Seaborn

Data Description#

Sea-surface temperature from Kaplan (1998) averaged over the NINO3 (5N-5S, 150W-190E)) region.

Demonstration#

Load a sample dataset#

%load_ext watermark

import pyleoclim as pyleo
import pandas as pd
import seaborn as sns
The watermark extension is already loaded. To reload it, use:
  %reload_ext watermark

Pyleoclim ships with a few pre-defined datasets:

pyleo.utils.available_dataset_names()
['SOI', 'NINO3', 'HadCRUT5', 'AIR', 'LR04', 'AACO2', 'EDC-dD', 'GISP2']

Let’s load the NINO3 timeseries and plot it:

nino3 = pyleo.utils.load_dataset('NINO3')
nino3.plot()
(<Figure size 1000x400 with 1 Axes>,
 <Axes: xlabel='time [year C.E.]', ylabel='NINO3 [$^{\\circ}$C]'>)
../_images/ddcbf7308fb2dbcdc58ebab1b5a77d7bc60aa8ecb2063fc7d5e7efcc4dfddb49.png

Slicing#

Passing a list containing a pair of dates to .sel() will return the time slice of interest. Notice that the syntax involves “slice”:

nino_slice = nino3.sel(time=slice(1972, 1998))
fig, ax = nino3.plot(label='Original')
nino_slice.plot(label='Slice', color='C1', ax=ax, lgd_kwargs={'ncol': 2})
<Axes: xlabel='time [year C.E.]', ylabel='NINO3 [$^{\\circ}$C]'>
../_images/40216b0a2bb133b8feda3f1dff7317287a47660778c9a2d2b56e5ddc876c6736.png

Stats#

Calling .stats() will return a handy dictionary of summary statistics (mean, median, min, max, standard deviation, and the interquartile range (IQR))

nino3.stats()
{'mean': 0.07816584993045111,
 'median': -0.022333334,
 'min': -1.739667,
 'max': 3.724903,
 'std': 0.8216852391762094,
 'IQR': 1.015916675}

Or you could do it the pandas way:

nino3.to_pandas().describe()
count    1596.000000
mean        0.078166
std         0.821943
min        -1.739667
25%        -0.487979
50%        -0.022333
75%         0.527937
max         3.724903
Name: NINO3, dtype: float64

Standardizing#

Calling .standardize() subtracts the mean of the series and divides by the standard deviation.

nino3_std = nino3.standardize()
nino3_std.label = nino3.label + ', standardized' 
nino3_std.stats()
{'mean': 1.3356066461656018e-17,
 'median': -0.12230861543917694,
 'min': -2.212322630686346,
 'max': 4.438119338404606,
 'std': 0.9999999999999998,
 'IQR': 1.2363817999438809}
fig, ax = nino3.plot(zorder=99) # this high zorder ensures that it plots on top
ax = nino3_std.plot(ax=ax, lgd_kwargs={'ncol': 2})
../_images/cb3e9965d6856d004f63cf4ece464bfb2cc4e2825e6e01a01643c7ff011fa297.png

Gaussianize#

Calling .gaussianize() maps the series to a standard Gaussian distribution. Not only will it have unit standard deviation (\(\sigma=1\)), a mean (and median) of 0, but its distribution is now the famed Bell Curve. This may be useful for methods that require data to be normally distributed.

nino3_gaus = nino3.gaussianize()
nino3_gaus.label = nino3.label + ', Gaussianized' 
nino3_gaus.stats()
{'mean': 1.3356066461656018e-17,
 'median': 0.0,
 'min': -3.419845799144218,
 'max': 3.419845799144218,
 'std': 0.9995910124024003,
 'IQR': 1.347994295650057}
fig, ax = nino3.plot(zorder=99)
ax = nino3_gaus.plot(ax=ax, lgd_kwargs={'ncol': 2}, **{'color':'red'})
../_images/082c68423849ae507f1a4fa1277ab69f24d6b7caf62f99ec0e27caaedd24d8b1.png

Plotting all of them together:

fig, ax = nino3.plot(zorder=99)
ax = nino3_gaus.plot(ax=ax, lgd_kwargs={'ncol': 2}, **{'color':'red'})
ax = nino3_std.plot(ax=ax, lgd_kwargs={'ncol': 2})
../_images/f29fe6dadca1882da4fc1a879ef4a7459c1598f532e0c46895e023a64febe57a.png

Comparison#

For context, it is interesting to compare the different treatments. Seaborn is a very useful plotting library that works very nicely with Pandas. To produce this quick comparison, we will gather those 3 Series into a MultipleSeries object and export it to a Pandas DataFrame. Seaborn will happily ingest this dataframe and return a kernel density plot summarizing the probability density of the data values in each treatment.

nino_ms =  nino3 & nino3_gaus & nino3_std
nino_df = nino_ms.to_pandas()
nino_df
The two series have values differing by more than 1e-05 $^{\circ}$C
Metadata are different:
label property -- left: NINO3 SST, right: NINO3 SST, standardized
The two series have values differing by more than 1e-05 $^{\circ}$C
Metadata are different:
label property -- left: NINO3 SST, Gaussianized, right: NINO3 SST, standardized
NINO3 SST NINO3 SST, Gaussianized NINO3 SST, standardized
datetime
1870-12-31 03:41:38 -0.358250 -0.468084 -0.531123
1871-01-30 14:10:31 -0.292458 -0.377045 -0.451054
1871-03-02 00:39:56 -0.143583 -0.166461 -0.269871
1871-04-01 11:08:49 -0.149625 -0.185602 -0.277224
1871-05-01 21:37:43 -0.274250 -0.348528 -0.428894
... ... ... ...
2003-08-01 04:22:03 0.238497 0.361911 0.195125
2003-08-31 14:51:28 0.411449 0.543054 0.405609
2003-10-01 01:20:21 0.592756 0.752493 0.626262
2003-10-31 11:49:14 0.664131 0.825394 0.713126
2003-11-30 22:18:39 0.604324 0.771389 0.640341

1596 rows × 3 columns

sns.set(font_scale=0.8)
ax = sns.kdeplot(data=nino_df, palette={'NINO3 SST':'steelblue', 'NINO3 SST, Gaussianized':'red', 'NINO3 SST, standardized':'orange'})
ax.legend_.set_title(None)
../_images/1e1e17f07a62df728cceb59793d04948751fcccbca345647039ae6e814aa1e13.png
%watermark -n -u -v -iv -w
Last updated: Mon Mar 04 2024

Python implementation: CPython
Python version       : 3.11.7
IPython version      : 8.20.0

pyleoclim: 0.13.1b0
seaborn  : 0.12.2
pandas   : 2.1.4

Watermark: 2.4.3